New Genetic Engineering Techniques

010116 DNA

The European Commission is very close to issuing a crucial decision on whether or not a set of seven new GM techniques will be covered by EU GMO legislation. The decision is also important as it will include guidelines for other new GM techniques in the future.

There is a strong push from the side of the industry and some public-private research institutes to have the products of these new GM techniques excluded from EU GM regulations. The Commission decision is expected by March or April. The Member States and the European Parliament will then be informed, but have no formal decision making power in this process.

Various new GM techniques have been developed in the past years, and more techniques are underway. The industry has rebranded them ‘new (plant) breeding techniques’ (NBTs) to make them seem close to classical breeding methods. These include Oligonucleotide Directed Mutagenesis (ODM), Zinc Finger Nuclease Technology (ZFN) comprising ZFN-1, ZFN-2 and ZFN-3, Cisgenesis & Intragenesis, Grafting, Agro-infiltration, RNA-dependent DNA methylation (RdDM), and Reverse breeding. ODM and ZFN are new “gene-editing” techniques and RdDM is a new technique of gene silencing. However, some of these techniques are not actually new: Cisgenesis for example is using standard GMO techniques, but is claimed to only be using genes (including promoters and terminators) from the same species. Grafting, Agro-infiltration and Reverse Breeding are new ways of using GMOs in the breeding process.

Other new gene-editing techniques include TALEN, Meganucleases and the hyped genome-editing technique CRISPR-Cas9 (These techniques are not specifically on the list of the Commission).

The question that has been posed by the European Commission itself is whether organisms produced via these techniques should be regulated in the same way as existing transgenic plants. This means they would undergo some form of risk assessment, would be labeled etc. Under the current Directive (2001/18/EC), these plants would fulfil the definition of a GMO, but they also should not be excluded from the regulatory scope for other reasons.

In their letter, UCCSNAL question the safety of CRISPR/Cas9 and other new biotechnologies as well as the influence of science in the decision-making process regarding the adoption of the new technologies. They fear that these technologies will further increase monopolistic powers over seeds, land grabbing and migration from the land and also have other, unanticipated impacts.

"The new technologies facilitate faster, more extensive changes in the genetic material of more organisms, and at lower cost", they argue. 

UCCSNAL demands a halt of all experimentation in this field. Rather, science should be based on acroecological techniques and local knowledges.

Open letter (English)
Open letter (Spanish)


Is it or isn't it?

Cisgenesis, zinc finger nuclease technology, reverse breeding, oligonucleotide-directed mutagenesis etc – the field of new techniques is broad and complex. New techniques or adaptations of existing techniques are constantly being added. The current political discussion, and the debate within public authorities or critics of genetic engineering, mostly focus on whether a particular technique or the product derived from it should be classed as genetic engineering or not, using the definition of genetic engineering set out in Art. 2.2 of the Release Directive (2001/18/EC) as a basis. In order to avoid too much technical detail, it is helpful to offer an initial categorisation of techniques based on their respective approach.

Category 1: Despite all claims to the contrary: "Classic" genetic engineering

Many of the new techniques are not really new, but correspond to techniques that have been established for over 20 years. This applies to both the breeding process and end products. Presently, attempts are being made to describe these techniques and their resulting products as conventional forms of breeding. Sometimes this even employs arguments brought to bear by the critics of genetic engineering. It is argued, for example, that unlike transgenesis, cisgenesis does not cross the species barrier and that the same results could therefore also be achieved through conventional breeding. The methods of transformation, however, clearly do represent forms of genetic engineering (particle bombardment or Agrobacterium tumefaciens). Even if the new gene originates from a species compatible for cross-breeding, it is impossible to predict where it will be integrated in the genome. This is what constitutes the risk inherent in this technique, in contrast to conventional breeding.

This category particularly includes the following procedures: Cisgenesis, intragenesis, floral dip and the use of genetically modified scions. Grafting onto genetically modified rootstock for commercial growing (not just during the breeding process) also falls within this category. It is incorrect to claim that harvested products (such as apples) derived from a scion grafted onto a GM parent plant do not constitute GMO. It is possible, for example, that proteins from the GM rootstock are transported to the non-GM scion; the phenotype of the scion and its product could therefore be altered. We believe the position of the Central Commission for Biological Safety (Zentrale Kommission für die Biologische Sicherheit, ZKBS), as outlined in their statement, to be unjustified; this demands that only GM rootstock should be classified as GMO and not the resulting harvested products (ZKBS, 2012:10). Even if no traces of transgenic or cisgenic DNA are found in the product, the principle of process-based evaluation which currently prevails in Europe mandates that the entire organism should be regulated as GMO, both for the purpose of growing these organisms and for labelling the resulting harvested crops.