1) Roundup Ready crops increased the use of herbicides and triggered the development of glyphosate resistant crops
  • In the lead biotech countries, glyphosate use rose dramatically since the introduction of RR crops and also total herbicide use rose in those countries. 1, 2, 3, 4, 5, 6, 7
  • Contrary in countries that do not cultivate RR crops, such as France, Germany and Switzerland a downward trend of pesticide use was observed. 8  
  • One of the main reasons for the increase in herbicide use in RR crop adopting countries is the widespread emergence of glyphosate resistant weeds, also referred to as ‘superweeds’, although Monsanto scientists originally rated such a development as ‘highly unlikely’.  1, 9, 10, 11, 12, 13, 14

  • Superweeds not only force farmers to increase their herbicide application rates and apply additional herbicides but also to go back to the costly, time- and labour-intensive weed control measures, thereby increasing overall costs for weed management and eliminating the main advantage of RR crops.  1, 11, 15, 16, 17, 18, 19, 20
  • Today there are 32 known weed species that have evolved resistance to glyphosate.  9
  • In 2012, one-third to fifty percent of the land planted to RR crops in the U.S. was infested with at least one glyphosate resistant weed and the trend is rising  21, 22
  • Glyphosate resistant weeds can lead to complete crop failure.  15
2) Increasing costs for seeds
  • In the U.S., overall seed prices rose rapidly since the introduction of GM crops  23 and this increase in seed price is not compensated with equally rising prices for crops.  21, 24
  • RR seeds are more expensive than conventional seeds  1, 21, 25
  • Biotech companies have implemented a ‘technology’ or ‘trait fee’, that is charged in addition to basic seed costs. This trait fee is also rising. 26
  • Non-GM seed prices are said to be artificially elevated to encourage farmers to continue buying GM crops.  27
  • Strict intellectual property rights prevent farmers from their customary habit of seed saving. Instead they have to purchase new seed every year from the biotech companies, which additionally results in higher costs for seed.  28
3) No clear yield increase
  • Herbicide tolerant crops are designed to kill weeds in order to approach the highest possible yield that the genetics of the crop allow. They do not have an increase yield potential compared to conventional varieties. Their value depends on pest pressure.  29, 20, 31, 32, 33
  • One of the most extensive literature reviews on yield contribution of GM corn, using 163,941 experimental trials conducted between 1997 and 2009 in the most important maize producing U.S. states, found no yield benefits for single herbicide tolerant traits.  32
  • Field studies conducted in the U.S. state Wisconsin from 1990-2010, show a lower average yield for glyphosate resistant maize compared to conventional maize.  34
  • In North America, yield benefits do neither in absolute numbers nor in their yield growth per year exceed those of Western Europe where as of today no RR crops are cultivated. This is also true for Spain, the only European country that grows herbicide resistant crops on a large scale.  8, 35, 36
  • The recorded increase of crop yields over the last 15 years is more likely to result from traditional breeding than from herbicide resistant crops and due to improvements of agricultural practices. 29, 30, 37, 38
  • Environmental parameters such as early season drought or reduced solar radiation at critical growth stages have a much bigger influence on yield than the type of hybrids used.  33
  • There is concern that the widespread use of glyphosate in RR cropping systems may impact crop growth, productivity and ultimately grain yield in that it decreases macro and micro nutrient uptake, translocation and accumulation, photosynthetic parameters and increases susceptability to certain fungal diseases such as Fusarium.  39, 40, 41, 42, 43, 44, 45, 46, 47, 48 Lower content of essential nutrients and altered seed composition can also have implications for animal and human health.
4) Adverse impact on farmland biodiversity
  • Results from the Farm Scale Evaluations (FSE) of herbicide tolerant crops in the UK showed that management practices in herbicide resistant oilseed rape and beet compared to conventional oilseed rape and beet decrease overall weeds and weed seeds and can on the long term deplete seed stores beyond recovery. This was also shown to affect insects such as butterflies and bees and farmland birds that depend on weeds and weed seeds. 49, 50, 51, 52
  • The iconic Monarch butterfly that travels south to Mexico in fall to overwinter and back to North America in spring, producing multiple generations of new butterflies, is endangered. Named reasons for its vast decline of 90% in only 20 years are loss of overwintering sites due to illegal logging in Mexico, severe weather conditions and most importantly the loss of milkweed plants, the sole food of the larvae, associated with increased glyphosate use in RR crop fields.  53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63
  • Sublethal effects of glyphosate on honeybees, key pollinators and extremely important for our food security, have been shown. 64, 65, 66 This demonstrates that only looking at lethal effects in environmental risk assessments is insufficient.
  • Glyphosate-based formulations have been shown to be toxic to many aquatic organisms such as algae, aquatic plants, protozoa, crustaceans, molluscs, amphibians and fish, each playing an important role for the functioning of an aquatic ecosystem. 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
  • Adjuvants, whose function within herbicide formulations is to enhance the chemical and physical efficacy of the active ingredient, are more toxic to aquatic organisms than glyphosate alone. This shows that testing glyphosate alone in environmental risk assessments is insufficient. 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
5) Adverse impact on human health
  • In vitro, clinical and epidemiological studies have shown that glyphosate-based formulations possibly pose serious health hazards, including cell death, disruption of hormonal systems, DNA damage, cell cycle dysfunction and cancer, malformations and birth defects amongst others. 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108
  • In 2015 the World Health Organisation’s (WHO) cancer agency, the International Agency for Research on Cancer (IARC), classified glyphosate as “probably carcinogenic to humans”, citing different studies that reported increased risk for non-Hodgkin lymphoma and other types of cancer such as skin tumours or the rare tumour renal tubule carcinoma 109, 110

(1)    Benbrook, C. M. (2012). Impacts of genetically engineered crops on pesticide use in the U.S. -- the first sixteen years. Environmental Sciences Europe, 24(1), 24. doi:10.1186/2190-4715-24-24. For the numbers of herbicides applied to conventional and HR crop acres see Additional file 1: Tables 8, 9 & 10.
(2)    Carneiro, F. F., Rigotto, R. M., Da Silva Augusto, L. G., Friedrich, K., Campos Búrigo, A. (2015). Dossiê ABRASCO: um alerta sobre os impactos dos agrotóxicos na saúde . Rio de Janeiro: EPSJV; São Paulo: Expressão Popular, 2015. http://aspta.org.br/wp-content/uploads/2015/05/DossieAbrasco_2015_web.pdf
(3)    CASAFE (2014). Estudio de Mercado de Fitosanitarios 2013.http://www.casafe.org.ar/pdf/EstudioFitosanitarios.pdf


(4)    Benbrook, C. M. (2005). Rust, Resistance, Run Down Soils, and Rising Costs-Problems Facing Soybean Producers in Argentina. Retrieved from http://www.keine-gentechnik.de/bibliothek/weltpolitik/studien/benbook_argentinen_gensoja_050101.pdf
(5)    CFS (2015). Monarchs in Peril. Herbicide-Resistant Crops and the Decline of Monarch Butterflies in North America. http://www.centerforfoodsafety.org/files/cfs-monarch-report_2-4-15_design_05341.pdf
(6)    U.S. Geological Survey, Department of the Interior/USGS. Pesticide Use Map. http://water.usgs.gov/nawqa/pnsp/usage/maps/show_map.php?year=2012&map=GLYPHOSATE&hilo=L&disp=Glyphosate
(7)    Grube, A., Donaldson, D., Kiely, T., Wu, L. (2011). Pesticide Industry Sales and Usage. US EPA. http://news.agropages.com/UserFiles/Report/Pdf/20120708204254971d.pdf
(8)    Heinemann, J. A., Massaro, M., Coray, D. S., Agapito-Tenfen, S. Z., & Wen, J. D. (2014). Sustainability and innovation in staple crop production in the US Midwest. International Journal of Agricultural Sustainability, 12(1), 71–88. http://doi.org/10.1080/14735903.2013.806408
(9)    Heap, I. (2015).  The International Survey of Herbicide Resistant Weeds.  Online.  Internet. Wednesday, February 25, 2015. Available www.weedscience.com
(10)    Powles, S. B., & Preston, C. (2006). Evolved Glyphosate Resistance in Plants: Biochemical and Genetic Basis of Resistance. Weed Technology, 20(2), 282–289. http://doi.org/10.1614/WT-04-142R.1
(11)    Sosnoskie, L. M., & Culpepper, A. S. (2014). Glyphosate-Resistant Palmer Amaranth ( Amaranthus palmeri ) Increases Herbicide Use, Tillage, and Hand-Weeding in Georgia Cotton. Weed Science, 62(2), 393–402. http://doi.org/10.1614/WS-D-13-00077.1
(12)    Nature (2014). A growing problem. Nature, 510: 187. http://www.nature.com/news/a-growing-problem-1.15382
(13)    Monsanto (1993). Petition for Determination of Nonregulated Status: Soybeans with a Roundup Ready™ Gene. Monsanto# 93-089U. http://www.aphis.usda.gov/brs/aphisdocs/93_25801p.pdf
(14)    Bradshaw, L. D. (1997). Perspectives on glyphosate resistance. Weed Technol, 11, 189–198.
(15)    Norsworthy, J. K., Griffith, G., Griffin, T., Bagavathiannan, M., & Gbur, E. E. (2014). In-Field Movement of Glyphosate-Resistant Palmer Amaranth ( Amaranthus palmeri ) and Its Impact on Cotton Lint Yield: Evidence Supporting a Zero-Threshold Strategy. Weed Science, 62(2), 237–249. http://doi.org/10.1614/WS-D-13-00145.1
(16)    Caulcutt, C. (2009). ‚Superweed’ explosion threatens Monsanto heartlands. France 24. Published April 19, 2009. http://agriculturedefensecoalition.org/sites/default/files/pdfs/3GE_2009_Monsanto_Superweeds_Round_up_Toxicity_News_April_19_2009_U.S._Problems.pdf
(17)    Zhou, X., Larson, J.A., Lambert, D.M., Roberts, R.K., English, B.C., Bryant, K.J., Mishra, A.K., Falconer, L.L., Hogan Jr., R.J., Johnson, J.L., & Reeves, J.M. (2015). Farmer experience with weed resistance to herbicides in cotton production. AgBioForum, 18(1), 114-125. http://agbioforum.org/v18n1/v18n1a12-zhou.htm
(18)    Delta Farm Press (2008). Designing the perfect weed – Palmer amaranth. http://deltafarmpress.com/management/designing-perfect-weed-palmer-amaranth
(19)    Haire, B. (2010). Pigweed threatens Georgia cotton industry. Southeast Farm Press. http://southeastfarmpress.com/pigweed-threatens-georgia-cotton-industry
(20)    University of Nebraska CropWatch (2015). Glyphosate-resistant Palmer amaranth confirmed in SW Nebraska. http://www.agprofessional.com/news/glyphosate-resistant-palmer-amaranth-confirmed-sw-nebraska?utm_content=bufferdd1d0&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
(21)    Benbrook, C. M. (2012b). Glyphosate tolerant crops in the EU. A forecast of impacts on herbicide use. Prepared for Greenpeace International.
(22)    Fraser K. Glyphosate resistant weeds – intensifying. Guelph, Ontario, Canada: Stratus Ag Research; 2013. http://stratusresearch.com/blog/glyphosate-resistant-weeds-intensifying/
(23)    Zilberman, D., Sexton, S. E., Marra, M. C., & Fernandez-Cornejo, J. (2010). The Economic Impact of Genetically Engineered Crops. Choices, 25(2). Retrieved from http://ideas.repec.org/a/ags/aaeach/94769.html
(24)     Fuglie, K. O., Heisey, P. W., King, J. L., Pray, C. E. (2011). Research Investments and Market Structure in the Food Processing, Agricultural Input , and Biofuel Insustries Worldwide. p13. USDA
(25)    Gaitán-Cremaschi, D., Kamali, F. P., van Evert, F. K., Meuwissen, M. P. M., & Oude Lansink, A. G. J. M. (2015). Benchmarking the sustainability performance of the Brazilian non-GM and GM soybean meal chains: An indicator-based approach. Food Policy, 55, 22–32. http://doi.org/10.1016/j.foodpol.2015.05.006
(26)    Hubbard, K. (2009). Out of Hand: Farmers Face the Consequences of a Consolidated Seed Industry. Farmer to Farmer Campaign on Genetic Engineering, National Family Farm Coalition
(27)    Royte, E. (2013). The post GMO economy. One mainstream farmer is returning to conventional seed – and he’s not alone. Modern Farmer. Retrieved, September, 8. 2014 from http://modernfarmer.com/2013/12/post-gmo-economy/
(28)    Mascarenhas, M., & Busch, L. (2006). Seeds of Change: Intellectual Property Rights, Genetically Modified Soybeans and Seed Saving in the United States. Sociologia Ruralis, 46(2), 122–138. http://doi.org/10.1111/j.1467-9523.2006.00406.x
(29)    Gurian-Sherman, D. (2009). Failure to Yield -  Evaluating the Performance of Genetically Engineered Crops. Cambridge, MA: Union of Concerned Scientiests.
(30)    Gurian-Sherman, D. (2013). Genetic Engineering and the Big Challenges for Agriculture – Lessons from the United States. Third World Network Biosafety Briefing.
(31)    Fernandez-Cornejo et al. (2006). The first Decade of Genetically Engineered Crops in the United States. USDA ERS.
(32)    Nolan, E., & Santos, P. (2012). The Contribution of Genetic Modification to Changes in Corn Yield in the United States. American Journal of Agricultural Economics, aas069. http://doi.org/10.1093/ajae/aas069
(33)    Bruns, H. A. (2014). Stacked-Gene Hybrids Were Not Found to Be Superior to Glyphosate-Resistant or Non-GMO Corn Hybrids. Crop Management, 13(1), 0. http://doi.org/10.2134/CM-2013-0012-RS
(34)    Shi, G., Chavas, J.-P., & Lauer, J. (2013). Commercialized transgenic traits, maize productivity and yield risk. Nature Biotechnology, 31(2), 111–114. http://doi.org/10.1038/nbt.2496
(35)    Heinemann, J. A., Massaro, M., Coray, D. S., Agapito-Tenfen, S. Z. (2014b). Reply to comment on sustainability and innovation in staple crop production in the US Midwest. International Journal of Agricultural Sustainability  12(4), 387-390. doi: 10.1080/14735903.2014.939843
(36)    Hilbeck, A., Lebrecht, T., Vogel, R., Heinemann, J. A., & Binimelis, R. (2013). Farmer’s choice of seeds in four EU countries under different levels of GM crop adoption. Environmental Sciences Europe, 25(1), 12. http://doi.org/10.1186/2190-4715-25-12
(37)    Pratt, S. (2014). Breeder annoyed GM given credit for yield hikes. The Western Producer. http://www.producer.com/2014/11/breeder-annoyed-gm-given-credit-for-yield-hikes/
(38)    Roseboro, K. (2015a). Vermont corn trials highlight better non-GMO yields, crop rotations over GMOs. The Organic and Non-GMO Report. http://www.non-gmoreport.com/articles/june-2015/vermont-corn-trials-highlight-better-non-GMO-yields-crop-rotations-over-gmos.php#sthash.lUkIWs66.Hg1sPfhs.dpuf
(39)    Eker, S., Ozturk, L., Yazici, A., Erenoglu, B., Romheld, V., & Cakmak, I. (2006). Foliar-Applied Glyphosate Substantially Reduced Uptake and Transport of Iron and Manganese in Sunflower (Helianthus annuus L.) Plants. Journal of Agricultural and Food Chemistry, 54(26), 10019–10025. http://doi.org/10.1021/jf0625196
(40)    Kremer, R., Means, N., & Kim, S. (2005). Glyphosate affects soybean root exudation and rhizosphere micro-organisms. International Journal of Environmental Analytical Chemistry, 85(15), 1165–1174. http://doi.org/10.1080/03067310500273146
(41)    Kremer, R. J., & Means, N. E. (2009). Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms. European Journal of Agronomy, 31(3), 153-161.
(42)    Johal, G. S., & Huber, D. M. (2009). Glyphosate effects on diseases of plants. European Journal of Agronomy, 31(3), 144–152. http://doi.org/10.1016/j.eja.2009.04.004
(43)    Huber, D. M. (2007). What about Glyphosate-Induced Manganese Deficiency?     Fluid Journal.
(44)    King, C. A., Purcell, L. C., & Vories, E. D. (2001). Plant Growth and Nitrogenase Activity of Glyphosate-Tolerant Soybean in Response to Foliar Glyphosate Applications. Agronomy Journal, 93(1), 179. http://doi.org/10.2134/agronj2001.931179x
(45)    Bellaloui, N., Zablotowicz, R. M., Reddy, K. N., & Abel, C. A. (2008). Nitrogen Metabolism and Seed Composition As Influenced by Glyphosate Application in Glyphosate-Resistant Soybean. Journal of Agricultural and Food Chemistry, 56(8), 2765–2772. http://doi.org/10.1021/jf703615m
(46)    Zobiole, L. H. S., Jr, R. S. de O., Huber, D. M., Constantin, J., Castro, C. de, Oliveira, F. A. de, & Jr, A. de O. (2010). Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans. Plant and Soil, 328(1-2), 57–69. http://doi.org/10.1007/s11104-009-0081-3
(47)    Zobiole, L. H. S., Kremer, R. J., de Oliveira Jr., R. S., & Constantin, J. (2012). Glyphosate effects on photosynthesis, nutrient accumulation, and nodulation in glyphosate-resistant soybean. Journal of Plant Nutrition and Soil Science, 175(2), 319–330. http://doi.org/10.1002/jpln.201000434
(48)    Zobiole, L. H. S., Oliveira, R. S., Visentainer, J. V., Kremer, R. J., Bellaloui, N., & Yamada, T. (2010). Glyphosate Affects Seed Composition in Glyphosate-Resistant Soybean. Journal of Agricultural and Food Chemistry, 58(7), 4517–4522. http://doi.org/10.1021/jf904342t -> Seed comp/photosnthetic parameters
(49)    Firbank, L. G., Heard, M. S., Woiwod, I. P., Hawes, C., Haughton, A. J., Champion, G. T., … Perry, J. N. (2003). An introduction to the Farm-Scale Evaluations of genetically modified herbicide-tolerant crops. Journal of Applied Ecology, 40(1), 2–16. http://doi.org/10.1046/j.1365-2664.2003.00787.x
(50)    Burke (2003). GM crops. Effects on Farmland Wildlife. Farm Scale Evaluations. http://webarchive.nationalarchives.gov.uk/20080306073937/http://www.defra.gov.uk/environment/gm/fse/results/fse-summary-03.pdf
(51)    Burke (2005). Managing GM crops with herbicides. Effects on farmland wildlife. Farm Scale Evaluations. http://webarchive.nationalarchives.gov.uk/20080306073937/http://www.defra.gov.uk/environment/gm/fse/results/fse-summary-05.pdf
(52)    Gibbons, D. W., Bohan, D. A., Rothery, P., Stuart, R. C., Haughton, A. J., Scott, R. J., … Firbank, L. G. (2006). Weed seed resources for birds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. Proceedings of the Royal Society B: Biological Sciences, 273(1596), 1921–1928. http://doi.org/10.1098/rspb.2006.3522
(53)    Monarch ESA petition (2014). Petition to Protect the Monarch Butterfly (Danaus Plexippus plexippus) Under the Endangered Species Act. http://www.centerforfoodsafety.org/files/monarch-esa-petition-final_61585.pdf
(54)    Brower, L. P., Taylor, O. R., Williams, E. H., Slayback, D. A., Zubieta, R. R., & RamíRez, M. I. (2012). Decline of monarch butterflies overwintering in Mexico: is the migratory phenomenon at risk?: Decline of monarch butterflies in Mexico. Insect Conservation and Diversity, 5(2), 95–100. http://doi.org/10.1111/j.1752-4598.2011.00142.x
(55)    Vidal, O., López-García, J., & Rendón-Salinas, E. (2014). Trends in Deforestation and Forest Degradation after a Decade of Monitoring in the Monarch Butterfly Biosphere Reserve in Mexico. Conservation Biology, 28(1), 177–186. http://doi.org/10.1111/cobi.12138
(56)    Vidal, O., & Rendón-Salinas, E. (2014). Dynamics and trends of overwintering colonies of the monarch butterfly in Mexico. Biological Conservation, 180, 165–175. http://doi.org/10.1016/j.biocon.2014.09.041
(57)    Fallon, S. (2014). Monarch butterfly population hits a new low. Switchboard. Natural Resource Defense Council Staff Blog. http://switchboard.nrdc.org/blogs/sfallon/monarch_butterfly_population_h.html
(58)    Fallon, S. (2015). Monarch butterflies can’t wait another year – EPA needs to act now. Switchboard. Natural Resources Defense Council Staff Blog.http://switchboard.nrdc.org/blogs/sfallon/monarch_butterflies_cant_wait_.html
(59)    CFS (2015a). Monarchs in Peril. Herbicide-Resistant Crops and the Decline of Monarch Butterflies in North America. http://www.centerforfoodsafety.org/files/cfs-monarch-report_2-4-15_design_05341.pdf
(60)    Hartzler, R. G. (2010). Reduction in common milkweed (Asclepias syriaca) occurrence in Iowa cropland from 1999 to 2009. Crop Protection, 29(12), 1542–1544. http://doi.org/10.1016/j.cropro.2010.07.018
(61)    Pleasants, J. M., & Oberhauser, K. S. (2012). Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population: Herbicide use and monarch butterflies. Insect Conservation and Diversity, 6(2), 135–144. http://doi.org/10.1111/j.1752-4598.2012.00196.x
(62)    Zalucki, M. P., & Lammers, J. H. (2010). Dispersal and egg shortfall in Monarch butterflies: what happens when the matrix is cleaned up? Ecological Entomology, 35(1), 84–91. http://doi.org/10.1111/j.1365-2311.2009.01160.x
(63)    Flockhart, D. T. T., Pichancourt, J.-B., Norris, D. R., & Martin, T. G. (2014). Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies. Journal of Animal Ecology, n/a–n/a. http://doi.org/10.1111/1365-2656.12253
(64)    Herbert, L. T., Vázquez, D. E., Arenas, A., & Farina, W. M. (2014). Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour. The Journal of Experimental Biology, 217(19), 3457–3464. http://doi.org/10.1242/jeb.109520
(65)    Helmer, S. H., Kerbaol, A., Aras, P., Jumarie, C., & Boily, M. (2014). Effects of realistic doses of atrazine, metolachlor, and glyphosate on lipid peroxidation and diet-derived antioxidants in caged honey bees (Apis mellifera). Environmental Science and Pollution Research International. http://doi.org/10.1007/s11356-014-2879-7
(66)    Balbuena, M. S., Tison, L., Hahn, M.-L., Greggers, U., Menzel, R., & Farina, W. M. (2015). Effects of sub-lethal doses of glyphosate on honeybee navigation. The Journal of Experimental Biology, dev.117291. http://doi.org/10.1242/dev.117291
(67)    Pérez, G. L., Vera, M. S., & Miranda, L. A. (2012). Effects of Herbicide Glyphosate and Glyphosate-Based Formulations on Aquatic Ecosystems. Retrieved from http://cdn.intechweb.org/pdfs/12592.pdf
(68)    Relyea, R. A. (2005a). The Impact of Insectivides and Herbicides on the Biodiversity and Productivity of Aquatic Communities. Ecological Applications, 15(2), 618–627. http://doi.org/10.1890/03-5342
(69)    Relyea, R. A. (2005b). The lethal impact of roundup on aquatic and terrestrial amphibians. Ecological Applications, 15(4), 1118–1124. http://doi.org/10.1890/04-1291
(70)    Relyea, R. A. (2005c). The Lethal Impacts of Roundup and Predatory Stress on Six Species of North American Tadpoles. Archives of Environmental Contamination and Toxicology, 48(3), 351–357. http://doi.org/10.1007/s00244-004-0086-0
(71)    Relyea, R. A., Schoeppner, N. M., & Hoverman, J. T. (2005). Pesticides and Amphibians: The Importance of Community Context. Ecological Applications, 15(4), 1125–1134. http://doi.org/10.1890/04-0559
(72)    Avigliano, L., Alvarez, N., Loughlin, C. M., & Rodríguez, E. M. (2014a). Effects of glyphosate on egg incubation, larvae hatching, and ovarian rematuration in the estuarine crab Neohelice granulata. Environmental Toxicology and Chemistry / SETAC, 33(8), 1879–1884. http://doi.org/10.1002/etc.2635
(73)    Avigliano, L., Fassiano, A. V., Medesani, D. A., Ríos de Molina, M. C. & Rodríguez, E. M. (2014b). Effects of Glyphosate on Growth Rate, Metabolic Rate and Energy Reserves of Early Juvenile Crayfish, Cherax quadricarinatus M. Bulletin of Environmental Contamination and Toxicology, 92(6), 631-635. http://doi.org/10.1007/s00128-014-1240-7
(74)    Cuhra, M., Traavik, T., & Bøhn, T. (2013). Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna. Ecotoxicology, 22(2), 251–262. http://doi.org/10.1007/s10646-012-1021-1
(75)    Cuhra, M., Traavik, T., & Bøhn, T. (2014). Life cycle fitness differences in Daphnia magna fed Roundup-Ready soybean or conventional soybean or organic soybean. Aquaculture Nutrition, n/a–n/a. http://doi.org/10.1111/anu.12199
(76)    Cuhra, M., Traavik, T., Dando, M., Primicerio, R., Ferreira Holderbaum, D., & Bøhn, T. (2015). Glyphosate-Residues in Roundup-Ready Soybean Impair Daphnia magna Life-Cycle. Journal of Agricultural Chemistry and Environment, 4, 24–36.
(77)    Mann, R. M., & Bidwell, J. R. (1999). The Toxicity of Glyphosate and Several Glyphosate Formulations to Four Species of Southwestern Australian Frogs. Archives of Environmental Contamination and Toxicology, 36(2), 193–199. http://doi.org/10.1007/s002449900460
(78)    Perkins, P. J., Boermans, H. J., & Stephenson, G. R. (2000). Toxicity of glyphosate and triclopyr using the frog embryo teratogenesis assay—Xenopus. Environmental Toxicology and Chemistry, 19(4), 940–945. http://doi.org/10.1002/etc.5620190422
(79)    Howe, C. M., Berrill, M., Pauli, B. D., Helbing, C. C., Werry, K., & Veldhoen, N. (2004). Toxicity of glyphosate-based pesticides to four North American frog species. Environmental Toxicology and Chemistry, 23(8), 1928–1938. http://doi.org/10.1897/03-71
(80)    Moore, L. J., Fuentes, L., Rodgers Jr., J. H., Bowerman, W. W., Yarrow, G. K., Chao, W. Y., & Bridges Jr., W. C. (2012). Relative toxicity of the components of the original formulation of Roundup® to five North American anurans. Ecotoxicology and Environmental Safety, 78, 128–133. doi:10.1016/j.ecoenv.2011.11.025
(81)    Vincent, K., & Davidson, C. (2015). The toxicity of glyphosate alone and glyphosate-surfactant mixtures to western toad (Anaxyrus boreas) tadpoles. Environmental Toxicology and Chemistry / SETAC. http://doi.org/10.1002/etc.3118
(82)    Mitchell, D. G., Chapman, P. M., & Long, T. J. (1987). Acute toxicity of Roundup® and Rodeo® herbicides to rainbow trout, chinook, and coho salmon. Bulletin of Environmental Contamination and Toxicology, 39(6), 1028–1035. http://doi.org/10.1007/BF01689594
(83)    Servizi, J. A., Gordon, R. W., & Martens, D. W. (1987). Acute toxicity of Garlon 4 and Roundup herbicides to Salmon,Daphnia, and trout. Bulletin of Environmental Contamination and Toxicology, 39(1), 15–22. http://doi.org/10.1007/BF01691783
(84)    Folmar, L. C., Sanders, H. O., & Julin, A. M. (1979). Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Archives of Environmental Contamination and Toxicology, 8(3), 269–278. http://doi.org/10.1007/BF01056243
(85)    Brausch, J. M., Beall, B., & Smith, P. N. (2007). Acute and Sub-Lethal Toxicity of Three POEA Surfactant Formulations to Daphnia magna. Bulletin of Environmental Contamination and Toxicology, 78(6), 510–514. http://doi.org/10.1007/s00128-007-9091-0
(86)    Brausch, J. M., & Smith, P. N. (2007). Toxicity of Three Polyethoxylated Tallowamine Surfactant Formulations to Laboratory and Field Collected Fairy Shrimp, Thamnocephalus platyurus. Archives of Environmental Contamination and Toxicology, 52(2), 217–221. http://doi.org/10.1007/s00244-006-0151-y
(87)    Tsui, M. T. K., & Chu, L. M. (2003). Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere, 52(7), 1189–1197. http://doi.org/10.1016/S0045-6535(03)00306-0
(88)    Tsui, M. T. K., & Chu, L. M. (2004). Comparative Toxicity of Glyphosate-Based Herbicides: Aqueous and Sediment Porewater Exposures. Archives of Environmental Contamination and Toxicology, 46(3), 316–323. http://doi.org/10.1007/s00244-003-2307-3
(89)    Everett, K. D. E., & Dickerson, H. W. (2003). Ichthyophthirius multifiliis and Tetrahymena thermophila Tolerate Glyphosate But Not a Commercial Herbicidal Formulation. Bulletin of Environmental Contamination and Toxicology, 70(4), 0731–0738. http://doi.org/10.1007/s00128-003-0044-y
(90)    Cedergreen, N., & Streibig, J. C. (2005). The toxicity of herbicides to non-target aquatic plants and algae: assessment of predictive factors and hazard. Pest Management Science, 61(12), 1152–1160. http://doi.org/10.1002/ps.1117
(91)    Benachour, N., & Séralini, G.-E. (2009). Glyphosate Formulations Induce Apoptosis and Necrosis in Human Umbilical, Embryonic, and Placental Cells. Chemical Research in Toxicology, 22(1), 97–105. doi:10.1021/tx800218n
(92)    Benachour, N., Sipahutar, H., Moslemi, S., Gasnier, C., Travert, C., & Séralini, G. E. (2007). Time- and Dose-Dependent Effects of Roundup on Human Embryonic and Placental Cells. Archives of Environmental Contamination and Toxicology, 53(1), 126–133. doi:10.1007/s00244-006-0154-8
(93)    Clair, É., Mesnage, R., Travert, C., & Séralini, G.-É. (2012). A glyphosate-based herbicide induces necrosis and apoptosis in mature rat testicular cells in vitro, and testosterone decrease at lower levels. Toxicology in Vitro, 26(2), 269–279. doi:10.1016/j.tiv.2011.12.009
(94)    Gasnier, C., Dumont, C., Benachour, N., Clair, E., Chagnon, M.-C., & Séralini, G.-E. (2009). Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology, 262(3), 184–191. doi:10.1016/j.tox.2009.06.006
(95)    Richard, S., Moslemi, S., Sipahutar, H., Benachour, N., & Seralini, G.-E. (2005). Differential Effects of Glyphosate and Roundup on Human Placental Cells and Aromatase. Environmental Health Perspectives, 113(6), 716–720.
(96)    Mesnage, R., Bernay, B., & Séralini, G.-E. (2013). Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology, 313(2–3), 122–128. doi:10.1016/j.tox.2012.09.006
(97)    Mesnage, R., Defarge, N., Spiroux De Vendômois, J., Séralini, G.-E. (2014). Major Pesticides Are More Toxic to Human Cells Than Their Declared Active Principles. BioMed Research International, 2014, e179691. doi:10.1155/2014/179691
(98)    Young, F., Ho, D., Glynn, D., Edwards, V. (2015). Endocrine disruption and cytotoxicity of glyphosate and roundup in human Jar cells in vitro. Integrative Pharmacology, Toxicology and Genotoxicology. Vol. 1(1): 12-19. doi: 10.15761/IPTG.1000104.
(99)    Romano, R. M., Romano, M. A., Bernardi, M. M., Furtado, P. V., & Oliveira, C. A. (2010). Prepubertal exposure to commercial formulation of the herbicide glyphosate alters testosterone levels and testicular morphology. Archives of Toxicology, 84(4), 309–317. http://doi.org/10.1007/s00204-009-0494-z
(100)    Abarikwu, S. O., Akiri, O. F., Durojaiye, M. A., & Adenike, A. (2015). Combined effects of repeated administration of Bretmont Wipeout (glyphosate) and Ultrazin (atrazine) on testosterone, oxidative stress and sperm quality of Wistar rats. Toxicology Mechanisms and Methods, 25(1), 70–80. http://doi.org/10.3109/15376516.2014.989349
(101)    Marc, J., Bellé, R., Morales, J., Cormier, P., & Mulner-Lorillon, O. (2004a). Formulated Glyphosate Activates the DNA-Response Checkpoint of the Cell Cycle Leading to the Prevention of G2/M Transition. Toxicological Sciences, 82(2), 436–442. http://doi.org/10.1093/toxsci/kfh281
(102)    Marc, J., Mulner-Lorillon, O., & Bellé, R. (2004b). Glyphosate-based pesticides affect cell cycle regulation. Biology of the Cell, 96(3), 245–249. http://doi.org/10.1016/j.biolcel.2003.11.010
(103)    Marc, J., Mulner-Lorillon, O., Boulben, S., Hureau, D., Durand, G., & Bellé, R. (2002). Pesticide Roundup provokes cell division dysfunction at the level of CDK1/cyclin B activation. Chemical Research in Toxicology, 15(3), 326–331.
(104)    Walsh, L. P., McCormick, C., Martin, C., & Stocco, D. M. (2000). Roundup inhibits steroidogenesis by disrupting steroidogenic acute regulatory (StAR) protein expression. Environmental Health Perspectives, 108(8), 769–776.
(105)    George, J., Prasad, S., Mahmood, Z., & Shukla, Y. (2010). Studies on glyphosate-induced carcinogenicity in mouse skin: a proteomic approach. Journal of Proteomics, 73(5), 951–964. http://doi.org/10.1016/j.jprot.2009.12.008
(106)    Séralini, G.-E., Clair, E., Mesnage, R., Gress, S., Defarge, N., Malatesta, M., Hennequin, D., Vendômois, J. S. de. (2014). Republished study: long-term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Environmental Sciences Europe, 26(1), 14. doi:10.1186/s12302-014-0014-5
(107)    Paganelli, A., Gnazzo, V., Acosta, H., López, S. L., & Carrasco, A. E. (2010). Glyphosate-Based Herbicides Produce Teratogenic Effects on Vertebrates by Impairing Retinoic Acid Signaling. Chemical Research in Toxicology, 23(10), 1586–1595. http://doi.org/10.1021/tx1001749
(108)    Krüger, M., Schrödl, W., & Pedersen Ib, S. A. (2014). Detection of Glyphosate in Malformed Piglets. J Environ Anal Toxicol, 4(230), 2161–0525.
(109)    Guyton, K. Z., Loomis, D., Grosse, Y., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., Scoccianti, C., Mattock, H., Straif, K. (2015). Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. International Agency for Research on Cancer.
(110)    IARC (2015). Glyphosate. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 112